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SUMMARY

In this paper, flows of liquid crystalline polymers into two-dimensional thin cavity moulds are simulated.
The flows are modelled by Ericksen–Leslie equations of motion in the high viscosity limit. An elliptic
pressure equation is derived under Hele–Shaw approximations, and the non-isothermal natures of the flow
are modelled. The equations are solved using the finite-difference technique. A new boundary-mapping
technique is developed in this study to solve the difficulty in the finite-difference treatment of arbitrarily
shaped boundaries, which possess no natural coordinate system. This new method avoids the difficult
mesh control in the body-fitted mapping process and makes the mapping process easy to implement. It
can also solve the problems caused by the uneven distribution of grid nodes in the traditional body-fitted
mapping technique. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Liquid crystalline polymers (LCPs) have a high degree of long-range molecular orientational order,
thereby being referred to as anisotropic fluids. When such LCPs are processed, the resulting
solid polymer maintains the high molecular orientational order of LCPs and consequently exhibits
special properties in comparison with traditional polymers. Therefore, it is very valuable to predict
the development of the molecular orientations during the processing of the LCPs.

At present, Leslie–Ericksen (L–E) theory and Doi’s theory are the two popular constitutive
theories for liquid crystals. The L–E theory, which is based on macroscopic continuum mechanics,
is suitable for describing the rheological properties of low molecular weight nematics. Doi’s theory,
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derived from microscopic molecular theory, is a kinetic model for rod-like polymers. Usually Doi’s
model is too complicated to be used in the simulation of complex flows. As mentioned by Chang
et al. [1], Kuzuu and Doi have demonstrated that Doi’s theory could be reduced to the L–E theory
in the limit of low shear rates. Many researchers, such as Chono and Tsuji [2], Chang et al. [1],
Güler [3], Baleo et al. [4] and Vanderheyden and Ryskin [5] have used the L–E theory in analysing
the flow-induced behaviour of LCPs.

This paper presents a numerical method to predict the transient director orientations of nematic
LCPs in Hele–Shaw flows. The Ericksen–Leslie equations of motion in the high viscosity limit
were used to model the flows. From the momentum equation and the continuity equation, we
derived an elliptic pressure equation that was solved by finite-difference method.

In this study, a new boundary-mapping technique was developed to solve the difficulty in the
finite-difference treatment of arbitrarily shaped boundaries, which possess no natural coordinate
system. Unlike the popular body-fitted mapping technique, which numerically maps the irregular
shape of the flow field to a more regular shape in a computational domain where the governing
equations are solved using the well-developed finite-difference schemes, the new technique only
constructs a general curvilinear coordinate system for the boundaries of the flow domain. For
the region inside boundaries, the governing equations are solved on the physical domain directly.
This technique avoids the difficult mesh control in the body-fitted mapping process and makes
the mapping process easy to implement. It can also solve the problems caused by the uneven
distribution of grid nodes in the traditional body-fitted mapping technique.

2. MATHEMATICAL MODELLING

2.1. Hele–Shaw approximations

This study focuses on the LCP flows during injection moulding in thin-walled moulds, as shown
in Figure 1. These flow fields can be approximated as Hele–Shaw flows in which one dimension
(z-direction) is much smaller in comparison with the other two. As demonstrated by Altan et al.
[6], this physical feature allows for the following simplifications: (1) viscous forces are dominant,
and inertial forces can be neglected in the momentum equations; (2) flow and dynamic forces in
the gapwise direction can be neglected; (3) shear stresses through the gap width are dominant and
the in-plane stresses can be neglected, which means that the shear rates through the gap width are
dominant and the in-plane shear rates can be neglected; and (4) the fluid is assumed incompressible.

2.2. Fluid motion

An elliptic pressure equation for isothermal nematics flows of fixed directors has been derived
by Chono and Tsuji in [2]. In this study, the non-isothermal nematics flows of free directors are
considered. As pointed out by Vanderheyden and Ryskin [5], LCPs exhibit very high viscosities
and it is reasonable to use the high viscosity approximation in LCPs flows. The Ericksen–Leslie
equations of motion in the high viscosity limit are given by

Continuity equation:

∇ ·v=0 (1)
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Figure 1. A Hele–Shaw-type flow in a mould cavity.

Momentum equation:

−∇ p+∇ ·s=0 (2)

Angular momentum equation:

Dn
Dt

=W·n+�(A ·n−n·A ·nn) (3)

The stress tensor is given by

s=�0A+�1n·A ·nnn+�2(nn·A+A ·nn) (4)

where v is the velocity vector, p is the pressure, � is the tumbling parameter, �0,�1, and �2 are
constant viscosities, n is the director orientation vector, s is the stress tensor, A is the rate of strain
tensor:

A= (∇v)T+∇v
2

(5)

and W is the vorticity tensor:

W= ∇v−(∇v)T

2
(6)

According to Hele–Shaw approximations, the momentum equation (2) can be simplified as in
the x-direction:

�p(x, y)
�x

= ��zx (x, y, z)

�z
(7a)
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in the y-direction:

�p(x, y)
�y

= ��zy(x, y, z)

�z
(7b)

The stress tensor equation (4) can be expressed as

�zx = f1(x, y, z)
�vx
�z

+ f2(x, y, z)
�vy
�z

(8a)

�zy = f2(x, y, z)
�vx
�z

+ f3(x, y, z)
�vy
�z

(8b)

where

f1(x, y, z) = �0
2

+�1 ·n2xn2z +
�2
2

(n2x +n2z )

f2(x, y, z) = nxny

(
�1 ·n2z +

�2
2

)

f3(x, y, z) = �0
2

+�1 ·n2yn2z +
�2
2

(n2y+n2z )

Now consider an arbitrary point in the x–y plane. At this point, x and y are constants, and for
an arbitrary function f (x, y, z),

� f (x, y, z)

�z
= d f (x, y, z)

dz
(9)

Integrating Equations (7a)–(7b) on z, we have

�zx (x, y, z) = �p(x, y)
�x

z+C1(x, y) (10a)

�zy(x, y, z) = �p(x, y)
�y

z+C2(x, y) (10b)

From Equations (8a)–(8b), we have

�vx

�z
= f3

f1 · f3−( f2)2
�zx − f2

f1 · f3−( f2)2
�zy (11a)

�vy

�z
= f1

f1 · f3−( f2)2
�zy− f2

f1 · f3−( f2)2
�zx (11b)

Substituting Equations (10a)–(10b) into Equations (11a)–(11b) and integrating on z, we have

vx = �p
�x

∫ z

0

f3
D
z′ dz′− �p

�y

∫ z

0

f2
D
z′ dz′+C1

∫ z

0

f3
D

dz′−C2

∫ z

0

f2
D

dz′ (12a)

vy = −�p
�x

∫ z

0

f2
D
z′ dz′+ �p

�y

∫ z

0

f1
D
z′ dz′−C1

∫ z

0

f2
D

dz′+C2

∫ z

0

f1
D

dz′ (12b)
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where

D= f1 · f3−( f2)
2

Considering vx (x, y,h)=0 and vy(x, y,h)=0, we have

C1 = E1
�p
�x

+E2
�p
�y

C2 = E3
�p
�x

+E4
�p
�y

E1 = R20R21−R10R31

R10R30−R2
20

E2 = R10R21−R20R11

R10R30−R2
20

E3 = R30R21−R20R31

R10R30−R2
20

E4 = R20R21−R11R30

R10R30−R2
20

Ri j =
∫ h

0

fi z j

D
dz

where h is the gap width.
The approximate continuity equation of Hele–Shaw flows can be expressed as

�(hvx )

�x
+ �(hvy)

�y
=0 (13)

where vx and vy represent the averages of velocities vx and vy on the gap width.
The interval [0,h] is divided into N small intervals of equal widths, �. For a bounded integrable

function f (z),

∫ h

0

∫ z

0
f dz′ dz= lim

N→∞
N∑
i=1

i∑
j=1

f j�
2= lim

N→∞
N∑
j=1

f j ·(N− j+1)�2=
∫ h

0
f ·(h−z)dz (14)

where f j represents the value of function f at the left point of the j th small interval.
Substituting Equations (12a)–(12b) into Equation (13), and using Equation (14), we have

G1
�2 p
�x2

+(G1+G2)
�2 p
�x�y

+G2
�2 p
�y2

+
(

�G1

�x
+ �G3

�y

)
�p
�x

+
(

�G2

�x
+ �G4

�y

)
�p
�y

=0 (15)
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where

G1 = S31+E1S30−E3S20

G2 = −S21+E2S30−E4S20

G3 = −S21−E1S20+E3S10

G4 = S11−E2S20+E4S10

Si j =
∫ h

0

fi z j

D
(h−z)dz

Equation (15) is the final elliptic pressure equation.

2.3. Viscosities

The six Leslie viscosities are given by Larson [7] as

�1 = −2�R2(p)S4 (16a)

�2 = −�R(p)

(
1+ 1

�

)
S2 (16b)

�3 = −�R(p)

(
1− 1

�

)
S2 (16c)

�4 = �R2(p) 2
35 (7−5S2−2S4)+�0 (16d)

�5 = �R(p)[ 17 R(p)(3S2+4S4)+S2] (16e)

�6 = �R(p)[ 17 R(p)(3S2+4S4)−S2] (16f)

where � is the characteristic viscosity, S2 and S4 are the second and fourth moments of the molecule
distribution function, and R(p) is a parameter that depends on the effective aspect ratio p of the
rigid molecules and is given as

R(p)= p2−1

p2+1
(17)

The term �0 is expected to be negligible for polymeric nematics [7].
The second and fourth moments S2 and S4, whose Maier–Saupe values are shown in Table I,

are given by Larson [7]. The other values of S2 and S4 are obtained by interpolation. Here T
represents the liquid crystal polymer temperature, and TNI represents the transforming temperature
from the nematic state into the isotropic state.

The tumbling parameter � can be obtained by the following simple approximation form [7]:

�= R(p)
5S2+16S4+14

35S2
(18)
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Table I. S2 and S4 from the Maier–Saupe theory.

T/TNI S2 S4

0.999 0.441 0.127
0.990 0.471 0.145
0.985 0.485 0.154
0.975 0.509 0.171
0.965 0.530 0.186
0.955 0.549 0.200
0.945 0.566 0.213
0.930 0.588 0.232
0.920 0.602 0.244
0.910 0.615 0.256
0.900 0.627 0.268
0.880 0.649 0.290
0.860 0.669 0.311
0.840 0.687 0.331
0.800 0.719 0.370
0.715 0.772 0.446
0.505 0.864 0.619
0.303 0.926 0.775

The characteristic viscosity � can be obtained from fits to the viscosity data of the liquid at
temperature above TNI, at which the liquid is in the isotropic state and has no orientational order,
so that S2= S4=0. Then the Newtonian viscosity �iso of this isotropic liquid is given by [7]

�iso= �4
2

= �

5
(19)

Shenoy and Saint measured the viscosity of liquid crystalline melts of copolymers of ethylene
terephthalate (ETP) and p-hydroxy benzoic acid (HBA) in a range of shear rates and temperatures
and at different polymer compositions. Their data for the 60mol% HBA: 40mol% ETP composition
have been fitted by Lekakou [8]. The result of Lekakou, which is shown in the following equation,
was used as �iso in this study:

�iso=8.18×10−4�̇0.82−1e6752/T (20)

where T is the absolute temperature of the liquid crystalline melts.
The coefficients used in the governing equations are given by

�0 = �4 (21a)

�1 = �1−�(�2+�3) (21b)

�2 = �5+��2 (21c)

2.4. Heat transfer

The energy equation for incompressible LCPs can be expressed as

�Cv

DT

Dt
=(∇ ·q)+(s :∇v) (22)
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where � is the density, Cv is the heat capacity per unit mass, q is the heat flow, T is the temperature,
and s is the stress tensor.

The heat flow q for LCPs is given by

q=�t1(n·∇T )n+�t2∇T (23)

where �t1 and �t2 are the thermal conductivity coefficients with �t1 expressing the anisotropy.
In the Hele–Shaw flow, we can assume that heat conduction in the gapwise direction is dominant

and in-plane heat conduction can be neglected. The energy equation can be simplified as

�Cv

DT

Dt
=�

�2T
�z2

+�
�T
�z

+(s :∇v) (24)

where

� = �t1n
2
z +�t2

� = �t1nz

(
�nx
�x

+ �ny
�y

+2
�nz
�z

)
+�t1

(
nx

�nz
�x

+ny
�nz
�y

)

3. SOLUTION METHODS

3.1. Grid generation

The finite-difference treatment of arbitrarily shaped boundaries, which possesses no natural coordi-
nate system, proves to be more difficult. In general, a body-fitted curvilinear mesh can be generated
over any irregular body by essentially mapping the boundaries of the irregular shape from the
physical domain to a more regular, prescribed shape in a computational domain. An orthogonal,
rectangular mesh can be created on the transformed, simpler domain and then mapped back to
provide a curvilinear mesh on the original irregular shape. The governing equations similarly can be
transformed and solved on the computational domain, using the well-established finite-difference
techniques, and the solutions at every node are mapped back onto the physical domain.

Usually Poisson-type elliptic expressions are used to relate the physical (x, y) coordinates to
the computational (	,�) coordinates due to their inherent ‘smoothness’ and the ability to handle
boundary discontinuities. These relations are

�2	
�x2

+ �2	
�y2

= P(	,�) (25a)

�2�
�x2

+ �2�
�y2

= Q(	,�) (25b)

In the above equations, P and Q are grid control functions that can be used to specify mesh
concentration in desired areas.

This scheme has been successfully used in the finite-difference solution of the equations for flows
inside irregularly shaped two-dimensional bodies by many researchers. However, the selection of P
and Q is not an easy task. Most researchers set them equal to zero. This simplification works well
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Figure 2. The numerical mapping of the boundary of an irregular flow domain (from the physical x, y
coordinates) to a more regular computational domain (in the 	,� coordinates).

for some situations, but the selection of P and Q is still necessary for flow domains of complicated
shapes. To solve this problem, we developed the so-called ‘boundary-mapping’ technique. As shown
in Figure 2, only the boundary of the flow domain takes part in the mapping process. Obviously the
mesh concentration control is not necessary and P and Q can be set equal to zero for arbitrarily
shaped flow domains. At the grid points on the boundary, the governing equations are transformed
and solved on the computational domain, and the solutions at every boundary node were mapped
back onto the physical domain. At the grid points inside boundaries, the governing equations
are solved on the physical domain directly. The mapping equations of the new method and the
traditional method are same. Therefore, the two methods should be of the same level accuracy.

This new boundary-mapping technique avoids the difficult mesh control in the body-fitted
mapping process and makes the mapping process easy to implement. The grid nodes generated
by the new method are evenly distributed. Therefore, it could solve the problems caused by the
uneven distribution of grid nodes in the traditional body-fitted mapping technique.

3.2. Transformation of the governing equations

�p
�x

= �p
�	

�	

�x
+ �p

��

��

�x
(26a)

�p
�y

= �p
�	

�	

�y
+ �p

��

��

�y
(26b)

�2 p
�x2

= �2 p

�	2

(
�	

�x

)2

+2
�2 p
�	��

�	

�x
��

�x
+ �2 p

��2

(
��

�x

)2

(26c)
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�2 p
�y2

= �2 p

�	2

(
�	

�y

)2

+2
�2 p
�	��

�	

�y
��

�y
+ �2 p

��2

(
��

�y

)2

(26d)

�2 p
�x�y

= �2 p

�	2
�	

�x
�	

�y
+ �2 p

�	��

�	

�y
��

�x
+ �2 p

�	��

�	

�x
��

�y
+ �2 p

��2
��

�x
��

�y
(26e)

Substituting Equations (26a)–(26e) into Equations (15), we have

a1
�2 p

�	2
+a2

�2 p
�	��

+a3
�2 p
��2

+a4
�p
�	

+a5
�p
��

=0 (27)

where

a1 = G1

(
�	

�x

)2

+(G2+G3)
�	

�x
�	

�y
+G4

(
�	

�y

)2

a2 = 2G1
�	

�x
��

�x
+(G2+G3)

(
�	

�x
��

�y
+ �	

�y
��

�x

)
+2G4

�	

�y
��

�y

a3 = G1

(
��

�x

)2

+(G2+G3)
��

�x
��

�y
+G4

(
��

�y

)2

a4 =
(

�G1

�x
+ �G3

�y

)
�	

�x
+

(
�G2

�x
+ �G4

�y

)
�	

�y

a5 =
(

�G1

�x
+ �G3

�y

)
��

�x
+

(
�G2

�x
+ �G4

�y

)
��

�y

Equation (27) is the pressure equation in the transformed domain.
From Equations (12a)–(12b), we have

hvx = G1
�p
�x

+G2
�p
�y

(28a)

hvy = G3
�p
�x

+G4
�p
�y

(28b)

Then,

hv	 = hvx
�	

�x
+hvy

�	

�y
(29a)

hv� = hvx
��

�x
+hvy

��

�y
(29b)
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Substituting Equations (28a)–(28b) into Equations (29a)–(29b), we have

hv	 = r1
�p
�	

+r2
�p
��

(30a)

hv� = r3
�p
�	

+r4
�p
��

(30b)

where

r1 = �	

�x

(
G1

�	

�x
+G3

�	

�y

)
+ �	

�y

(
G2

�	

�x
+G4

�	

�y

)

r2 = ��

�x

(
G1

�	

�x
+G3

�	

�y

)
+ ��

�y

(
G2

�	

�x
+G4

�	

�y

)

r3 = �	

�x

(
G1

��

�x
+G3

��

�y

)
+ �	

�y

(
G2

��

�x
+G4

��

�y

)

r4 = ��

�x

(
G1

��

�x
+G3

��

�y

)
+ ��

�y

(
G2

��

�x
+G4

��

�y

)

4. SIMULATION RESULTS AND DISCUSSION

In this section, the simulation results of the injection moulding of LCPs with a constant inlet
pressure are presented. The shape of the mould cavity is approximately 7 cm wide, 10 cm long,
and has a gap width of 3mm. The melt was considered to enter the cavity at an inlet temperature
of 300◦C. A constant inlet pressure of 60 atm was assumed during the filling stage. The simulation
is programmed in FORTRAN and run on a DELL notebook computer. The common iteration
algorithm was used in the solution of Equations (15) and (27).

4.1. Using the traditional mapping technique

Mapping relations:

�2	
�x2

+ �2	
�y2

= 0 (31a)

�2�
�x2

+ �2�
�y2

= 0 (31b)

The body-fitted curvilinear meshes generated under Equations (31a)–(31b) are demonstrated in
Figure 3. In this simulation a mesh of 101 nodes by 101 nodes was used.

The mould temperature is assumed to be 250◦C. Figure 4(a) shows the locations of the free
surfaces at various times during the filling operations. The filling time is approximately 7.2 s.
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Figure 3. The body-fitted curvilinear mesh.

Figure 4. The free surface locations at various time, time interval=0.5s, mould temperature=250◦C:
(a) traditional mapping technique and (b) new mapping technique.

As shown in Figure 3, the grid intervals along ABCD are smaller than those along EF . Therefore,
the computation accuracies of pressures and velocities along EF are lower. These differences in
computation accuracies and their accumulation during the filling process may cause distortions
of the flow fronts, as shown in Figure 4(a). This is a disadvantage of the traditional mapping
technique. This problem may be solved by the new ‘boundary-mapping’ technology. In addition,
due to the uneven distribution of grid nodes, more grid nodes are necessary to guarantee the
computation accuracy in the whole flow domain. This causes more computation cost. In this study,
it took approximately 15 h in computation when using the traditional mapping technique, which
is in contrast to the approximately 2 h when using the new boundary-mapping technique.
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Figure 5. Director orientations at different layers, mould temperature=250◦C: (a) z=0.5 gap size (centre);
(b) z=0.25 gap size; and (c) z=0.1 gap size.

4.2. Using the new boundary-mapping technique

The mould temperature is assumed to be 250◦C. Figure 4(b) shows the locations of the free
surface at various times during the filling operations. The filling time is approximately 7.4 s. The
simulation results near the completion of the filling stage are shown in Figures 5 and 6. Figure 5
shows the director orientation distributions in the x–y plane for three different heights in the mould
gap width. The temperature distributions are displayed in Figure 6.

The simulation results when the mould temperature is equal to 200◦C are shown in Figures 7–9.
It can be seen that the director orientations align the flowing directions near the mould wall

when the mould temperature is 250◦C and are irregular near the mould wall when the mould
temperature is 200◦C.

Except in the central core, Hele–Shaw flows can be treated as a simple shear flow. Therefore,
the director orientations show the phenomenon of aligning when tumbling parameter � is larger
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Figure 6. Temperature distributions at different layers, mould temperature=250◦C: (a) z=0.5 gap size
(centre); (b) z=0.25 gap size; and (c) z=0.1 gap size.

Figure 7. The free surface locations at various time, time interval=1.5s, mould temperature=200◦C.

than 1 and tumbling when � is less than 1. According to Table I and Equation (18), � is a
function of temperature. As shown in Figure 10, when the temperature is more than 0.927TNI, �
is larger than 1; when temperature is lower than 0.927TNI, � is larger than 1. When TNI=300◦C,
0.927TNI≈258.2◦C. Therefore, when the mould temperature is 250◦C, the flow near the wall is
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Figure 8. Director orientations at different layers, mould temperature=200◦C: (a) z=0.5 gap size (centre);
(b) z=0.25 gap size; and (c) z=0.1 gap size.

aligning, as shown in Figure 5(c); the phenomenon of tumbling appears as the mould temperature
equals 200◦C, as shown in Figure 8(b) and (c).

5. CONCLUSION

In this paper, a numeric simulation approach of injection moulding process of LCPs is presented.
The corresponding technique can predict the locations of melt front at selected time steps during
the injection and the director orientation distributions at various time steps. The LCP flows are
modelled by Ericksen–Leslie equations of motion in the high viscosity limit. An elliptic pressure
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Figure 9. Temperature distributions at different layers, mould temperature=200◦C: (a) z=0.5 gap size
(centre); (b) z=0.25 gap size; and (c) z=0.1 gap size.
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Figure 10. The relation between tumbling parameters � and T/TNI.

equation was derived under Hele–Shaw approximations, which was solved by finite-difference
method. A new ‘boundary-mapping’ technique was developed to solve the difficulty in the finite-
difference treatment of arbitrarily shaped boundaries. It may solve the problems caused by the
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uneven distribution of grid nodes in the traditional body-fitted mapping technique. It can also avoid
the difficult mesh control in the body-fitted mapping process and reduce the computation time to
some extent.
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